Prediksi Perubahan Tutupan Lahan di Kabupaten Bogor Tahun 2026 Menggunakan Random Forest dengan Citra Satelit Sentinel-2 Terklasfikasi

Authors

  • Muhammad Syaifur Rohman Institut Teknologi Bandung, Indonesia
  • Afrinaldi Afrinaldi Institut Teknologi Bandung, Indonesia
  • Syauqani Institut Teknologi Bandung, Indonesia
  • Maya Institut Teknologi Bandung, Indonesia

DOI:

https://doi.org/10.31292/jta.v8i2.413

Keywords:

Tutupan Lahan, Random Forest, Urbanisasi, Sentinel-2, Perencanaan Lahan

Abstract

Bogor Regency has experienced significant land cover changes due to urbanization, population growth, and infrastructure expansion. This study predicts land cover changes in 2026 using a random forest model based on classified Sentinel-2 satellite imagery. The model was trained with data from 2017, 2020, and 2023 and evaluated using 2-fold time-series cross-validation, with an accuracy of 87.96%, Kappa 0.8131, and F1-Score 0.8752. The prediction results show an increase in built-up area from 748.02 km² (2017) to 953.89 km² (2023) and is estimated to reach 976.84 km² in 2026—especially in Pamijahan and Jonggol. On the other hand, agricultural areas decreased from 652.53 km² to 541.11 km² and are predicted to decrease again to 530.33 km², threatening local food security. Tree cover areas also decreased from 1,509.12 km² (2017) to 1,385.34 km² (2023) but are expected to increase to 1,413.42 km² in 2026 due to the reforestation program. These findings emphasize the importance of sustainable land planning to balance development with environmental conservation for the sustainability of the ecosystem and the welfare of the Bogor community.

 

Kabupaten Bogor mengalami perubahan tutupan lahan yang signifikan akibat urbanisasi, pertumbuhan penduduk, dan ekspansi infrastruktur. Penelitian ini memprediksi perubahan tutupan lahan tahun 2026 menggunakan model Random Forest berbasis citra satelit Sentinel-2 yang telah diklasifikasi. Model dilatih dengan data tahun 2017, 2020, dan 2023, serta dievaluasi menggunakan 2-fold time-series cross-validation, dengan akurasi 87,96%, Kappa 0,8131, dan F1-Score 0,8752. Hasil prediksi menunjukkan peningkatan area terbangun dari 748,02 km² (2017) menjadi 953,89 km² (2023), dan diperkirakan mencapai 976,84 km² pada 2026—terutama di Pamijahan dan Jonggol. Sebaliknya, area pertanian menurun dari 652,53 km² menjadi 541,11 km², dan diprediksi turun lagi menjadi 530,33 km², mengancam ketahanan pangan lokal. Area tutupan pohon juga menurun dari 1.509,12 km² (2017) ke 1.385,34 km² (2023), namun diperkirakan meningkat menjadi 1.413,42 km² pada 2026 karena program reboisasi. Temuan ini menegaskan pentingnya perencanaan lahan berkelanjutan untuk menyeimbangkan pembangunan dengan pelestarian lingkungan, demi keberlanjutan ekosistem dan kesejahteraan masyarakat Bogor.

Downloads

Download data is not yet available.

References

Arifin, D. (2018). Identifikasi Tutupan Lahan Kota Samarinda dengan Memanfaatkan Citra Satelit Landsat-8 dan Algoritma NDVI. Elipsoida: Jurnal Geodesi dan Geomatika, 1 (02), 79-84. https://doi.org/10.14710/elipsoida.2018.3470

Aryastana, P., Widya, I. G., DAna, G. W., Suyasa, I. P., & Tamara, W. (2023). Estimasi Perubahan Tutupan Lahan Dengan Menggunakan Normalized Difference Vegetation Index (Ndvi) di Kabupaten Klungkung Provinsi BalI. Jurnal Teknik Gradien, 15(01), 45-51. https://doi.org/10.47329/teknik_gradien.v15i01.1014

Asyari, N. I., R. P Sitorus, S., & Wicaksono, A. (2024). Land Use Change Pattern of Change and Strategy Directions for Spatial Utilization Control in Bogor Regency. Journal of World Science, 3(7), 732–749. https://doi.org/10.58344/jws.v3i7.665

Badan Pusat Statistik. (2024). Statistik Daerah Kabupaten Bogor 2024. BPS Kabupaten Bogor.

Bradley, A. V, Rosa, I. M. D., Brandão, A., Crema, S., Dobler, C., Moulds, S., Ahmed, S. E., Carneiro, T., Smith, M. J., & Ewers, R. M. (2017). An ensemble of spatially explicit land-cover model projections: prospects and challenges to retrospectively evaluate deforestation policy. Modeling Earth Systems and Environment, 3, 1215–1228. https://doi.org/10.1007/s40808-017-0376-y

Breiman, L. (2001). Random Forests. Machine Learning, 45, 5–32. https://doi.org/10.1023/A:1010933404324

Cahya, D. L., Martini, E., & Kasikoen, K. M. (2018). Urbanization and Land Use Changes in Peri-Urban Area using Spatial Analysis Methods (Case Study: Ciawi Urban Areas, Bogor Regency). IOP Conference Series: Earth and Environmental Science, 123, 012035. https://doi.org/10.1088/1755-1315/123/1/012035

Dwiantoro, D., Kurniyawan, R., Indrayana, D. V., & Septiani, H. (2023). Pengembangan Jonggol Sebagai Pusat Pemerintahan Kabupaten Bogor Timur Berbasis Smart City. Planners Insight: Urban And Regional Planning Journal. https://doi.org/10.36870/insight.v4i1.319

Grinand, C., Vieilledent, G., Razafimbelo, T., Rakotoarijaona, J., Nourtier, M., & Bernoux, M. (2020). Landscape‐scale spatial modelling of deforestation, land degradation, and regeneration using machine learning tools. Land Degradation & Development, 31(13), 1699–1712. https://doi.org/10.1002/ldr.3526

Insaf, Moh. (2004). Fenomena Urbanisasi Kawasanpinggiran Kota Jakarta (Studi Kasus: Desa Bojonggede Kecamatan BojonggedeKabupaten Bogor). https://www.semanticscholar.org/paper/92feb4d66eee95791c49bb6bd2962ba52fa55ad8

Intan, P. T., Notosudjono, D., & Mansyur, U. (2024). Potensi dan Pengembangan Kawasan Agrowisata Berwawasan Lingkungan di Kecamatan Ciomas Kabupaten Bogor Provinsi Jawa Barat. Jurnal Teknik | Majalah Ilmiah Fakultas Teknik UNPAK. https://doi.org/10.33751/teknik.v25i1.10216

Iqtashada, & Febrita, J. (2023). Pengaruh Tata Guna Lahan terhadap Kualitas Air Sungai Cisadane di Kota Bogor. Jurnal Teknik Sipil dan Lingkungan. https://doi.org/10.29244/jsil.8.1.9-18

Jaya, B., Rustiadi, E., Fauzi, A., & Pravitasari, A. E. (2021). Land conversion and availability of agricultural land in 2035 in Puncak Area Bogor Regency. IOP Conference Series: Earth and Environmental Science, 694(1), 012052. https://doi.org/10.1088/1755-1315/694/1/012052

Karra, K., Kontgis, C., Statman-Weil, Z., Mazzariello, J. C., Mathis, M., & Brumby, S. P. (2021). Global land use / land cover with Sentinel 2 and deep learning. 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 4704–4707. https://doi.org/10.1109/IGARSS47720.2021.9553499

Landis, J. R., & Koch, G. G. (1977). The Measurement of Observer Agreement for Categorical Data. Biometrics, 33(1), 159. https://doi.org/10.2307/2529310

Larrea‐Gallegos, G., & Vázquez‐Rowe, I. (2022). Exploring machine learning techniques to predict deforestation to enhance the decision‐making of road construction projects. Journal of Industrial Ecology, 26(1), 225–239. https://doi.org/10.1111/jiec.13185

Liu, H., Homma, R., Liu, Q., & Fang, C. (2021). Multi-scenario prediction of intra-urban land use change using a cellular automata-Random Forest model. ISPRS International Journal of Geo-Information, 10(8), 503. https://doi.org/10.3390/ijgi10080503

Ma, L., Liu, Y., Zhang, X., Ye, Y., Yin, G., & Johnson, B. A. (2019). Deep learning in remote sensing applications: A meta-analysis and review. ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177. https://doi.org/10.1016/j.isprsjprs.2019.04.015

Mariati, Y., Widiarti, W. Y., & Halik, G. (2022). Analisis Perubahan Tata Guna Lahan Pada DAS Tanggul Menggunakan Remote Sensing. Jurnal Rekayasa Sipil Dan Lingkungan, 6(2), 153. https://doi.org/10.19184/jrsl.v6i2.16340

Mellor, A., Boukir, S., Haywood, A., & Jones, S. (2015). Exploring issues of training data imbalance and mislabelling on Random Forest performance for large area land cover classification using the ensemble margin. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 155–168. https://doi.org/10.1016/j.isprsjprs.2015.03.014

Monsaputra, M. (2023). Analisis perubahan penggunaan lahan pertanian menjadi perumahan di kota Padang Panjang. Tunas Agraria, 6(1), 1–11. https://doi.org/10.31292/jta.v6i1.200

Nabila, D. A. (2023). Pemodelan prediksi dan kesesuaian perubahan penggunaan lahan menggunakan Cellular Automata-Artificial Neural Network (CA-ANN). Tunas Agraria, 6(1), 41–55. https://doi.org/10.31292/jta.v6i1.203

Pham, Q. B., Ali, S. A., Parvin, F., Van On, V., Sidek, L. M., Đurin, B., Cetl, V., Šamanović, S., & Minh, N. N. (2024). Multi-spectral remote sensing and GIS-based analysis for decadal land use land cover changes and future prediction using Random Forest tree and artificial neural network. Advances in Space Research, 74(1), 17–47. https://doi.org/10.1016/j.asr.2024.03.027

Qin, Y., Xiao, X., Wigneron, J.-P., Ciais, P., Brandt, M., Fan, L., Li, X., Crowell, S., Wu, X., & Doughty, R. (2021). Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nature Climate Change, 11(5), 442–448. https://doi.org/10.1038/s41558-021-01026-5

Rodriguez-Galiano, V. F., Ghimire, B., Rogan, J., Chica-Olmo, M., & Rigol-Sanchez, J. P. (2012). An assessment of the effectiveness of a Random Forest classifier for land-cover classification. ISPRS Journal of Photogrammetry and Remote Sensing, 67, 93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002

Sachro, S. S., Edhisono, S., Atmodjo, P. S., & Prasetyo, W. (2017). Korelasi Klasifikasi Penutup Lahan dengan Debit Puncak di Daerah Aliran Sungai. Media Komunikasi Teknik Sipil, 23(2), 157–165. https://doi.org/10.14710/mkts.v23i2.16687

Saha, S., Saha, M., Mukherjee, K., Arabameri, A., Ngo, P. T. T., & Paul, G. C. (2020). Predicting the deforestation probability using the binary logistic regression, Random Forest, ensemble rotational forest, REPTree: A case study at the Gumani River Basin, India. Science of The Total Environment, 730, 139197. https://doi.org/10.1016/j.scitotenv.2020.139197

Saini, R., & Rawat, S. (2023). Land use land cover classification in remote sensing using machine learning techniques. 2023 1st International Conference on Innovations in High-Speed Communication and Signal Processing (IHCSP), 99–104. https://doi.org/10.1109/IHCSP56702.2023.10127126.

Tapsi, S. Al, Baga, L. M., & Feryanto, F. (2025). Analisis kluster pengembangan sektor pertanian di Kabupaten Bogor berbasis karakteristik kewirausahaan pertanian. Region: Jurnal Pembangunan Wilayah dan Perencanaan Partisipatif. https://doi.org/10.20961/region.v20i1.87909

Undang-Undang Republik Indonesia Nomor 16 Tahun 2016 tentang Pengesahan Paris Agreement to the United Nations Framework Convention on Climate Change. (2016). Lembaran Negara Tahun 2016 Nomor 204, Tambahan Lembaran Negara Nomor 5939.

UNFCCC. (2015). Paris Agreement. Conference of the Parties (COP) 21. https://unfccc.int/sites/default/files/english_paris_agreement.pdf

Virtriana, R., Deanova, M. A., Safitri, S., Anggraini, T. S., Ihsan, K. T. N., Deliar, A., & Riqqi, A. (2024). Identification of land cover change and spatial distribution based on topographic variations in Java Island. Ecological Frontiers, 44(1), 129–142. https://doi.org/10.1016/j.chnaes.2023.08.002

Virtriana, R., Sumarto, I., Deliar, A., Pasaribu, U. S., & Taufik, Moh. (2015). Identification of Bogor regency land cover change index based on geospatial data. 060004. https://doi.org/10.1063/1.4915056

Yuan, K., Zhu, Q., Zheng, S., Zhao, L., Chen, M., Riley, W. J., Cai, X., Ma, H., Li, F., & Wu, H. (2021). Deforestation reshapes land-surface energy-flux partitioning. Environmental Research Letters, 16(2), 024014. https://doi.org/10.1088/1748-9326/abd8f9

Yuan, K., Zhu, Q., Zheng, S., Zhao, L., Chen, M., Riley, W. J., Cai, X., Ma, H., Li, F., Wu, H., & Chen, L. (2021). Deforestation reshapes land-surface energy-flux partitioning. Environmental Research Letters, 16(2), 024014. https://doi.org/10.1088/1748-9326/abd8f9

Zanella, L., Folkard, A. M., Blackburn, G. A., & Carvalho, L. M. T. (2017). How well does Random Forest analysis model deforestation and forest fragmentation in the Brazilian Atlantic Forest? Environmental and Ecological Statistics, 24, 529–549. https://doi.org/10.1007/s10651-017-0389-8

Downloads

Published

2025-05-02

How to Cite

Rohman, M. S., Afrinaldi, A., Syauqani, A., & Safira, M. (2025). Prediksi Perubahan Tutupan Lahan di Kabupaten Bogor Tahun 2026 Menggunakan Random Forest dengan Citra Satelit Sentinel-2 Terklasfikasi. Tunas Agraria, 8(2), 192–218. https://doi.org/10.31292/jta.v8i2.413